
DOCUMENT RESUME

ED 278 362 IR 012 468

AUTHOR Ohlsson, Stellan
TITLE Some Principles of Intelligent Tutoring.
INSTITUTION Pittsburgh Univ., Pa. Learning Research and

Development Center.
SPONS AGENCY National Inst. of Education (ED), Washington, DC.;

National Science Foundation, Washington, D.C.
PUB DATE 85
GRANT MDR-8470339
NOTE 50p.
PUB TYPE Information Analyses (070) -- Viewpoints (120)

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS *Cognitive Style; Computer Assisted Instruction;

*Diagnostic Teaching; *Epistemology; *Individualized
Instructions Research Needs; *Systems Development;
*Teaching Methods; Tutoring

IDENTIFIERS *Intelligent Tutoring Systems

ABSTRACT
Arguing that the main promise of computers lies in

their potential for moment-by-moment adaptation of instructional
content and form to the changing cognitive needs of individual
learners, this paper clarifies the implications of this potential for
tutoring research, and points out overlooked relations between
different strands of research relevant to the construction of
intelligent tutoring systems. The discussion focuses on four major
topics: (1) cognitive diagnosis; (2) subject matter analysis; (3)
teaching tactics; and (4) strategies for teaching. The implications
of the goal of providing dynamically adaptive instruction for each of
these factors are analyzed, and the results of the analyses are
stated as principles about intelligent tutoring. The ma3or conclusion
is that, in order to provide adaptive instruction, a computer tutor
must have a strategy which translates its tutorial goals into
teaching actions, and that, as a consequence, research on teaching
strategies is central to the construction of intelligent tutoring
systems. A four-page list of references concludes the document.
(DJR)

***********************************************************************
* Reproductions supplied by EDRS are the best that can be made *
* from the original document. *
***********************************************************************



viq

"PERMISSION TO REPRODUCE THIS

MATERIAL HAS BEEN GRANTED BY

IENT OF EOUCANON
Research and Improvement

SOURCES INFORMATION
ITER (ERIC)

has been reproduced an
le person or organization

eve been made to improve

TO THE ElJUCATIONAL RESOURCES

INFORMATION CENTER (ERIC)."

spinions sialed in this doctr
cessarily represent official



SOME PRINCIPLES OF INTELLIGENT fUTORING

Ste llan Ohlsson

Learning Research and Development Center
University of Pittsburgh

1985

Preparation of this manuscript was supported in part by Grant MDR-8470339
from the National Science Foundation (NSF), and in part by funds from the
National Institute of Education (NIE), U. S. Department of Education. The
opinions expressed do not necessarily reflect the position or policy of NSF or N1E,
and no official endorsement should be inferred.

I thank my colleagues Jeff Bonar, Glynda Hull, and Gaea Leinhardt for useful
comments on both content and style.

Copyright © 1985, Ste llan Ohlsson

4



Ohlsson 1 Tutoring Principles

ABSTRACT

Research on intelligent tutoring systems is discussed from the point of view of providing

moment-by-moment adaptation of both content and form of instruction to the changing cognitive

needs of the individual learner. The implications of this goal for cognitive diagnosis,

subject-matter analysis, teaching tactics, and teaching strategies are analyzed. The results of

the analyses are stated in the form of principles about intelligent tutoring. A major conclusion is

that a computer tutor, In order to provide adaptive instruction, must have a strategy which

translates its tutorial goals into teaching actions, and that, as a consequence, research on teaching

strategies is central to the construction of intelligent tutoring systems.
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Introduction

Proponents of individualized Instruction, or, as it is sometimes called, adaptive education

(Glas'e, 1978, Wang & Walberg, 1985), have sought to tailor instruction to such characteristics of

the student as initial competence, educational goal, learning style, and, most often, leaning rate,

in recognition of the fact that interindividual differences in cognition implies that different

learners need different instruction. Neither the history (Grinder & Nelsen, 1985) nor the current

state (Bangert, Kulik, & Ku lik, 1983) of such efforts are encouraging.

The birth of the computer tutor alters this situation drastically. The computer offers the

potential for adapting instruction to the student at a finer-grain level than the one which

concerned earlier generations of educational researchers. First, instead of adapting to global

traits such as learning style, the computer tutor can, in principle, be programmed to adapt to tbe

student dynamically, during ongoing instruction, at each moment In time providing the kind of

instruction that will be most beneficial to the student at that time. Said differently, the

computer tutor takes a longitudinal, rather than cross-sectional, perspective, focussing on the

fluctuating cognitive needs of a single learner over time, rather than on stable interindividual

differences. Second, and even more important, instead of adapting to content-free characteristics

of the learner such as learning rate, the computer can, in principle, be programmed to adapt both

the content and the form of Instruction to the student's understanding of the subject matter.

The computer can be programmed, or so we hope, to generate exactly that question, explanation,

example, counter-example, practice problem, illustration, activity, or demonstration which will be

most helpful to the learner. It is the task of providing dynamic adaptation of content and form

which is the challange and the promise of computerized instruction.1

lin this article, the terms tesehing, tutoring, end °instruction° will be used as synonyms.
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When we envisage computer tutors helping out in the classroom, it is easy to be trapped into

thinking in terms of particular tutors. If we want good tutoring in, say, arithmetic, what more is

needed, we might ask, than a good arithmetic tutor? This perspective forgets, in the concretion

of the vision, that the task of tutoring is forever changing. School systems undergo reforms,

student populations follow the rhythms of the surrounding society, topics are added to, or deleted

from, the curriculum, courses are moved from one age-level to another, and course contents vary

from textbook to textbook, from classroom to classroom. What we need, then, are not particular,

quickly outdated, computet tutors but the know-how of tutor construction. As everyone knows

who have written a large computer program, it is possible to proceed by accumulating tricks and

patches, ending up with a system that Is so irregular that, in a sense, one cannot say why it

works. But even a pedagogically successful tutor has limited interest if it leaves system designers

without any information about how to design the next system. The output of research into

computer tutoring should consist, not of particular systems, but of prhiciples which allow

specifications in terms of course content and student characteristics to be turned into effective

tutors. The main points of the present article will be formulated as informal principles of

intelligent tutoring; some of these principles summarize beliefs which are commonly held in the

field, others indicate new directions.

In summary, the main promise of computer tutors, I claim, lies in their potential for moment-

by-moment adaptation of instructional content and form to the changing cognitive needs of the

individual learner, and our task, as I see it, is to find principles which can guide the construction

of tutors which fulfill that promise. My main goal in the following is to clarify the implications of

this view for intelligent tutoring research. I break the discussion into four sections, dealing with

cognitive diagnosis, subject matter analysis, teaching tactics, and teaching strategies,

respectively. In each section, I propose one or more principles which, I argue, constitute minimal

criteria of adequacy for a tutor which is to provide dynamically adaptive instruction. My
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secondary goal Is to point out some often overlooked relations between different strands of

research relevant to the construction of tutoring systems. I end with a summary of the main

argument.

Cognitive Diagnosis

If the purpose of intelligent tutoring systems, their raison etre, is to provide adaptive

instruction, then such a system must know something about the cognitive state of the student,

what he knows and how he thinks, and preferably how he learns. I will call the process of

inferring a person's cognitive state from his performance for cognitive diagno8i8.2 To the extent

that the major failure of current educational practices is the failure to provide adaptIN:s.

instruction, then the limits on the sensitivity and resolving power of our diagnostic procedures are

also the limits on the amount of pedagogical progress attainable through hitelligent tutoring

systems.3 Therefore, we should look carefully at current methods for cognitive diagnosis.

Research on cognitive diagnosis has been conducted from several viewpoints. Educators have

developed tests for what they call assessment or normative diagnosis (Ginsburg, 1983; Nitko, in

press), and there are materials available for diagnostic teaching, materials which emphasize the

diagnosis of particular kinds of errors (e. g., Hill, 1980). The problem of describing the mental

state of single individuals has also been addressed by psychologists, most notably developmental

psychologists (e. g., Smedslund, 1969), even though the mainstream of academic psychology has

been more interested in finding regularities across individuab. Information-processing psychology

has contributed new methods for inferring the mental states and processes of single individuals, as

21n research on tutoring system, the term °student modelling° is often used, but I will avoid it, gine it is unnecessarily
restrktive. Students are not the only human beings who can be diagnosed, and a model is not the only poulble kind of
diagnosk.

SAn immediate corollary it that commercially available educational software which, se role, do not hay. any diagnostic
capabilities, la not, in fut, produce more learning than traditional teaching materials.
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well as a new formal rigor (Newell & Simon, 1972; Williams & Ho llan, 1981). Research on

cognitive diagnosis from the point of view of intelligent tutoring systems goes one step further in

that It alms for computer Implemented diagnostic methods (e. g., Burton, 1982). This exciting

deve)opment, originating, somewhat paradoxically, from within computer science, adds potential

to this methodological tradition, which so far has not held center stage In psychological research.

What kind of diagnostics do we need In a computer tutor which Is to provide adaptive

education? In order to approach this question, vv; need a framework within which various types of

diagnosis can be compared. I2 the next section, I review some types of diagnostic methods. I

propose to discuss them In terms of (a) the kinds of empirical observations they operate upon, as

well as the kinds of knowledge structures they need to carry out the diagnosis (I. e., their

"Inputs"), (b) the procedures by which they Infer the cognitive state of the student, and (c) the

types of descriptions they generate (I. e., their "outputs"). In addition, we ought to consider (d)

the theoretical commitments of the various methods, and (e) the teaching actions they are

intended to support. Of these four categories, the type of description generated by the diagnostic

system Is the more fundamental. There are characteristic ways of deriving each type of

description, as wen as typical ways of using it in instruction. Also, the theoretical commitments

of a diagnostic method usually reside In the type of description It generates (rather than, say, In

the procedure by which It Is . generated). The review In the next section has four parts,

corresponding to four types of diagnostic descriptions: performance measures, overlays, error

descriptions, and simulations. In a later section, I describe a new perspective on diagnosis which,

I believe, Is more relevant for Instruction.

Before getting started, we need to be clear about terminology. In the following, "error" Is

used as a generic term for misconceptions, false beliefs, procedural bugs, etc. An error resides In

the head, as It were. The observable expression of the error is referred to as an "Incorrect

answer," or "Incorrect performance."
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Performance measures

8 Tutoring Principles

The simplest way to describe a p.71son in relation to an area of knowledge is to measure

how successfully he solves problems in that area. Performance measures appear in educational

contexts under a variety of labels, such as "test scores," "examination results," "assessment

levels," etc. Computation of such a measure requires nothing but the student's answers - a type

of data which is readily available in most contexts - and some statistical aggregation procedure.

It may seem as if a performance level, being an obs:Tvational construct, is blessed with theoretical

innocence. However, use of the performance level as a basis for instruction assumes that we need

not know what knowledge a student has acquired in order to tutor him effectively, only how

much. Since such a measure is a global representation of the student, it can only support global

actions on the part of the tutor. For instance, a tutor can upgrade or downgrade the difficulty of

practice items, it can speed up or slow down a presentation, it can provide either terse or full

explanations, etc. But performance measures do not, as one authority agrees (Glaser, in press),

provide the level of detail necessary to decide what this student needs right now in order to learn

that concept, procedure, fact, or principle.4

Overlays

To provide dynamic adaptation of the content of instruction, we must move from a concern

with how much knowledge a student has to a concern with what he knows. Given an analysis of

the subject matter to be acquired, we can represent a student by the set of subject-matter units

he has mastered, for instance, the geometric theorems which he knows how to apply. Such a

4
Some educators are thinking hard about how to use recent research results from cognitive psychology to construct more

informative educational tests (Gluer, in press; Nitko, in press), but such tests still belong to the future.

1 0



Ohisson 7 Tutoring Principles

description is called an overlay model in the literature on intelligent tutoring systems (Carr &

Goldstein, 1977). The student is represented as a network of tick-marks rhich, as it were, is laid

over the representation of the subject matter to show which parts of it he already knows. Prom

the overlay point of view, the student knows a subset of what a domain expert knows. Learning

Is the process of acquiring a progressively more complotl: subset of the expert's knowledge units,

but different learners can acquire those units in different orders, so that two learners who have

roughly the same amount of knowledge can nevertheless know very different things.

Overlays are particularly natural models of students when the subject matter to be learned is

represented as a prereqttiaite hierarchy. In such hierarchiv, which have great intuitive appeal in

mathematics and other problem-solving domains, each knowledge unit is broken down into its

components or prerequisites, e. g., addition and subtraction are prerequisites for long division.

Prerequisite hierarchies have been investigated by educators and psychologists (e. g., Gagne, 1962;

Resnick, 1973; Resnick, Wang, & Kaplan, 1973) and have been re-invented by computer

scientists. They are used quite frequently in intelligent tutoring systems, without the kind of

empirical verification which educational researchers regard as necessary (Resnick & Wang, 1969).

The typical procedure for inferring an overlay works by relating the student's performance to

the prerequisite structure of the subject matter. If a student reliably succeeds on a particular

type of task, then he can be inferred to have acquired whatever knowledge items are prerequisites

for succeeding on that task. If he fails reliably, at least one of the prerequisites can be assumed to

be missing from his competence. Since the various knowledge items are needed in different

combinations for different problem types, one can puzzle out which items a student has mastered

by a judicial choice of problems. Sandra Marshall (1980; 1981) has worked out a precise theory

for how to compute an overlay model for a prerequisite hierarchy. The essence of her diagnostic

procedure is to compute a probability distribution over the set of possible diagnoses, to revise

that distribution after each response from the student on the basis of Baysian decision theory,

11
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and to use statistical information theory for choosing maximally informative problems to present.

This kind of diagnosis is widely used in intelligent tutoring systems, usually without the

mathematical sophistication introduced by Marshall.

Like the performance level, the overlay at first seems to be innocent of theoretical

commitments. In fact, overlays make two assumptions which limit their usefulness for

instruction. A prerequisite hierarchy - or any other type of analysis - views the subject matter in

a patticular way, from a particular vantage point. Since the overlay representation of the student

is parasitic on the representation of the subject matter, the overlay shows how far the student has

progressed in acquiring a particular vim of the subject matter. However, rarely, if ever, is there

only one possible view, and, unfortunately, If the view used by the tutor 13 not the view which the

student is trying to attain, as it were, then the overlay might be useless as a basis for instruction.

The second detrimental property of an overlay is that it assumes that a student is a subset of

an expert. The learner is seen as knowing the same things as an expert, only fewer of them. This

perspective ignores the possibility of distorted knowledge. However, recent research Into

arithmetic, algebra, and physics has revealed that different learners do not just differ in which

subset of the subject matter they have acquired, but also in how they misunderstanci. that part of

the subject-matter which they have not yet mastered (see below). There are no resources within

the overlay to represent this fact.

An overlay model, particularly when coupled with a prerequisite analysis of the knowledge

domain, can guide the decision of what topic to tutor next: In general, the next topic should be

chosen from those subject-matter units which are not yet mastered, but which have all their

prerequisites ticked off as known. Thus, an overlay allows a tutor to solve the traditional

pedagogical problem of sequencing the subject matter, and, moreover, to solve it adaptively, for

each student, and dynamically, while instruction Is happening.

12
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Error Descriptions

The empirical evidence Is now overwhelming that learners do not only fail to acquire the

content presented to them during Instruction, they also misrepresent it. Students acquire

erroneous procedures, false principles, and incorrect facts, both inside and outside school (e. g.,

Gentner & Stevens, 1983; VanLehn, 1983). The most spectacular progress in cognitive diagnosis

In the past years Is the appearance of computerized diagnostic methods for identifying the errors

of individual learners. Such methods have so far been successful in a small number of knowledge

domains, most notably arithmetic (e. g., Burton, 1982), algebra (e. g., Sleeman, 1982), and

elementary 'programming (Johnson & Soloway, 1983; 1984; Soloway, Rubin, Woolf, Bonar, &

Johnson, 1982).

These diagnostic systems usually work with performance data, 1. e., the pattern of correct and

incorrect answers on a set of problems, or, in the case of programming, a, single answer. The

inferential procedure which is used in this type of diagnosis is based on an error library, I. e., a

list of possible errors. Given a particular student, It is possible to compute which error (or

combination of errors) best account for the incorrect answers of that student. The basic

difficulties in constructing such systems are (a) to establish the error library, which Is a labour-

intensive empirical undertaking, and (b) to invent methods which can compute the best-fitting

error combination efficiently enough to deliver a diagnosis in a reasonable time.

The basic idea of error identification through an error library has been significantly extended

in the PROUST system by Johnson and Soloway (1983; 1984), which takes a programming

problem, I. e., a specification of a program, and a (typically incorrect) program as inputs, and

tries to understand the incorrect program. PROUST has several different knowledge structures

to draw upon, including an error library, a library of programming plans, knowledge of

13
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programmers' goals, etc. Its inferential procedure attempts to develop a goal structure for the

problem which accounts for all the parts of the code in the observed program, using both correct,

and, if necessary, incorrect programming plans as bridges between a particular goal

decomposition and the faulty code. PROUST delivers a hypothesis about the programmer's

intentions, and about how he tried to realize them, I. e., it generates an account of how the faulty

program was created. Besides the programmer's intentions in writing the program (the goal

hierarchy), the account also includes the domain-specific knowledge the programmer used (the

correct programming plans), and the mistakes he did (the errors that must be posited to make

the account complete). PROUST has been successful in diagnosing incorrect programs by novice

programmers.

The theoretical commitments of error identification systems hide in their descriptions of

errors. An error library reifies the errors, as it were, by making a decision as to what is a

primitive error and what is a compound error. Furthermore, since errors are unavoidably

described as deviations from correct knowledge, error descriptions presuppose a particular

representation of the subject matter. Different analyses of the subject matter may result in

different error libraries, and so in different diagnoses of particular students.

The pedagogical promise of an error description is that it might enable remedial instruction.

Given knowledge of which particular error a student is suffering from, we should be able to help

him overcome it. However, deciding on the best remedy for a particular error is not a trivial

matter, and, in fact, error descriptions have not been used in many tutoring systems. The

approach taken by Attisha and Yazdanl (1983; 1984) is to have the tutoring system type out a

prestored natural language description of an error. The same idea has been used in the tutors

constructed by John Anderson and his co-workers (Anderson, Boyle, & Reiser, 1985; Anderson,

Boyle, & Yost, 1985; Reiser, Anderson, & Farrell, 1985), with the extension that they link specific

errors with natural language templates containing variables which are filled with situation-

14
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specific information at the time they are output to the student. Reaching for the next level of

flexibility, Woolf and McDonald (1984) are designing a system to do remedial teaching through a

didactic dialogue. As we shall see in the section on teaching tactics, talking to a student about

his error is not the only kind of remedial teaching.

Simulations

A description of a student's cognitive state can consist of a simulation model which performs

like him in the relevant knowledge domain. The main characteristic of such a representation is

that it is runnable, I. e., that It will generate behavior when applied to a task. The behavior is a

prediction of what the simulated person would do, if he solved the same task. With thb kind of

representation, we can explain the student's steps towards his answer to a problem, as well as the

answer itself.

The first systematic method for constructing simulation models was proposed by Newell and

Simon (1972). Their method takes think-aloud protocols as input, and the inferrence from data

to simulation model proceeds in three steps. First, the protocol is scanned for evidence

concerning the student's5 mental encoding of the task, as well as for the cognitive operations he is

applying to it. An encoding of a task and a set of operators together define a problem apace;

consequently, we call this the problem space approach to diagnosis (Ohlsson & Langley, In press;

1985). Second, the sequential information in the protocol is used to construct the student's path

to solution. Third, problem-solving rules are invented which can generate the solution path. The

rule set is a model for the student's performance on the relevant task. This is a very labour-

intensive diagnostic method. Early efforts to computerize It were not successful (Waterman &

Newell, 1972), because, one might guess, of the need for such a system to understand the

utterances In the think-aloud protocol, a task that was beyond the natural language capabilities

6The method was conceived in the context of buie research on human problem-solving, but in keeping with the
terminology in the rest of this article, I will write about °students° rather than °subjects.°

15
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of computers at the time.

Pat Langley and I have recently collaborated on a different effort to computerize the problem

space approach to cognitive diagnosis Langley, Ohisson, & Sage, 1984; Ohisson & Langley, in

press; 1985). We constructed a computer program which takes an answer as input, rather than a

think-aloud protocol, plus a problem space. The system searches the given problem space for a

path which leads to the observed (possibly Incorrect) answer, chosing between alternative paths

on the basis of psychological criteria. Like the PROUST system discussed in the previous

subsection, our program creates an account of how the Incorrect answer was created. However,

our type of account - a solution path - is much simpler than the type of generated by account

used by PROUST. Once a path has been found, so-called machine learning methods can be

applied to it in order to generate problem-solving rules which will reproduce the observed answer.

Our program has successfully diagnosed a small set of subtraction errors.

The output from the problem space approach to diagnosis does not, in a sense, describe the

errors of the diagnosed student. Rather, the method generates a procedure which performs the

relevant tasks in the same way as the student. Whether that procedure is to be classified as

correct or incorrect cannot be determined with reference to the way in which it was generated.

The diagnostic method does not make use of the concept of "correctness," nor of an error library.

Errors are implicitly described in the way in which the rules are stated, rather than explicitly

described, as in the error identification methods described previously.°

It is interesting to contrast our diagnostic method, with the model-tracing method used by

John Anderson and his co-workers (Anderson, Boyle, & Yoost, 1985; Reiser, Anderson, & Farrell,

°The explicit description of the error can be recovered by comparing the rules generated by the diagnostic procedure with
the rules for correct performance. However, this would introduce a difficulty whkh is now familiar eAkk representation of
correct performance should the student's rules be compared to? Different representations of the correct procedure will lead
to different characterizations of the differences.

16



Oh Isson 13 Tutoring Principles

1985). The model-tracing method operates in the context of intelligent tutoring systems which

monitor students' problem- solving activity. In that context, file diagnostic component need not

compute the student's solution path, because it can observe what the student does, step by step.

Also, the diagnostic system has a knowledge base consisting of several hundred problem-solving

rules which encode both correct knowledge about the domain and typical errors. The system

builds a model of the student by locating, for each problem-solving step he takes, which rule (or

rules) corresponds to that step. By operating In a context where the solution path is observable

and by having a large rule library, model-tracing diagnosis essentially side-steps the diagnostic

problem that the problem space approach tries to solve. There is a lesson to be learned here with

respect to intelligent tutoring which will be spelled out In detail In the next section.

The product of a model-tracing diagnosis is similar to an overlay in that it consists of a

selection of knowledge units from a pre-established set. However, since the rule base can include

incorrect as well as correct rules, the model-tracing diagnosis can represent both the student's

knowledge and his errors. Also, since the rule base can contain alternative versions of the correct

problem-solving rules, model-tracing diagnosis can model a learner vith respect to several

alternative versions of the correct problem-solving skill. Finally, since the knowledge units are

executable rules, the rule set which represents the student is, in principle7, a runnabie model.

The theoretical commitments of simulations are more visible than the commitments of the

other types of descriptions discussed. A simulation presupposes a performance theory. It must

specify the mental representation of both declarative and procedural knowledge, it must assume

something about memory stores and their properties, it must take a stand on whether human

cognition is goal driven or not, and, If so, how goa!3 are managed, It must run under some

particular cognitive architecture, etc. The problem space approach to diagnosis Is based on the

?Andereon
and co-worken do not make any strong claims about the runnability of their student models.

17
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theory that thinking consists of heuristic search through a problem space (Newell & Simon, 1972).

The model-tracing methodology is strongly influenced by the general idea of heuristic search, but

builds in its specifics on the ACT* theory (Anderson, 1983). Other performance theories might

lead '40 yet other diagnostic methods.

A simulation model is a powerful description. Intuitively, we would expect such a description

to buy us dramatic advantages in instruction, particularly with respect to individualized

instruction. It is therefore suprising to realize that it is not clear what one can do with a

simulation of the student that one cannot do without it. Planning and designing instruction

which is maximally useful for a student is not P simple task, even with the help of a powerful

description of that student.

IMPROVING COGNITIVE DIAGNOSIS

The different types of cognitive diagnosis discussed in the previous section form a regular

progression towards more and more powerful descriptions of the student. A performance measure

indicates the proportion of the subject matter which the student has mastered; an overlay model

specifies which portion, and thereby, indirectly, which knowledge units the student still needs to

learn. Error descriptions add information about what we might call negative subject matter, I. e.,

the distorted and twisted knowledge units which the student needs to unlearn. Finally,

simulations enable us to run the representation of the student, and thereby to make detailed

predictions about his performance.

Although they differ with respect to completeness of description, all the diagnostic systems

reviewed in the last section, with the exception of the model-tracing method, share a common

perspective. They are based on a view of diagnosis as "research in miniature,* to use Ginsburg's

(1983) happy phrase. The task of diagnosis is, according to this perspective, to explain, or

18
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account for, a set of observations (performances). These methods (again, with the exception of

model tracing) do not take into account how the diagnosis they produce is going to be used. But

we need to know wiaat the purpose of diagnosis is in order to decide how powerful a diagnostic

method we should incorporate into our tutoring systems.

Let us consider the decision situation of a tutor, and what role the diagnostic component can

play in it. A computer tutor is usually able to present practice problems and to provide feed-

back; It might be able to demonstrate correct solutions, to provide explanations, give hints, ask

questions, etc. But no matter now sophisticated and versatile the tutoring system is, it will only

have a finite number of actions to choose from, and its only task, one might claim, is to select one

of those actions as the next thing to do. (This is a fair description of how some tutoring systems

work.) The tutor's only use of the diagnosis, it seems, is to help select that next action. This

perspective tempts us to view the diagnostic component of the tutor as a mechanism for mapping

tutorial situations onto instructional actions, I. e., as imposing an equivalence-classification on the

set of tutorial situations, one class containing all situations in which action A (e. g., explaining) is

pedagogically superior, another class containing all situations in which action B (e. g.,

demonstrating), is superior, etc. This kind of diagnosis seems ripe and ready to be attacked with

the well-established methodology of expert systems (e. g., Waterman, 1988).

Before falling for the temptation to develop this perspective further, we should remember that

intelligent teaching does not consist of sequences of unrelated actions. A tutoring effort is

structured; It coordinates the individual teaching actions, subsumes them under a plan for how to

transmit the relevant knowledge. The moment-to-moment behavior of the tutor originate in the

execution of that plan, rather than In successive decisions about what to do next. If the student

model Is to be useful, it has to contribute in some way to the construction and execution of

instructional plans. This perspective is sufficiently different from the idea of "research in

miniature° to be stated as a principle:

19
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The Principle of Pragmatic Diagnosis. The purpose of the diagnostic component
of an intelligent tutoring system is to support the execution of its instructional plan.

Considering diagnosis from this point of view, we are lead to ask what function cognitive

diagnosis could have in the construction and execution of instructional plans. The crucial link

between an instructional plan and a student model is, I propose, that instructional plans contain

(implicit) expectations about what the student will do in response to the tutor's actions. For

instance, consider the following simple, two-step plan for teaching the solution to problem Y:

"first review problem X (e. g., addition of proper fractions), then introduce problem Y (e. g.,

addition of mixed fractions), and then show how the solution to X can be applied to Y as well."

This plan implicitly presupposes that the student knows how to solve problem X correctly, so

that X can be used as a pedagogical resource or lever in the teaching of Y. If this expectation is

violated - the student fails to solve X - then the plan becomes irrelevant and has to be revised.

Every instructional plan, I believe, contains implicit expectations about the student, expectations

which, if violated, render the plan irrelevant.

This observation suggests that one function of cognitive diagnosis in tutoring is to test the

viability of the expectations underlying the tutor's instructional plan.

The Principle of Expectation Testing. The function of the diagnostic component
of an intelligent tutoring system is to test whether the expectations presupposed by the
tutor's current plan are consistent with its current model of the student.

One procedure for making such a test is to predict, ftom the current model of the student, how

he will respond to the tutor's actions, and then compare the predictions with the expectations. If

they diverge, then the plan is not viable vie-a-vie current knowledge of the student. The plan

should then be revised, and the expectations of the new plan tested, etc., until a viable plan is

found. If it turns out that the actual (as opposed to the predicted) behavior of the student does

not conform to the expectations/predictions, then, of course, both the instructional plan and the

st.. dent model have to be revised. This argument speaks strongly in favor of runnable student
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models.

In summary, a number of diagnostic methods exist which generate more or less powerful

representations of the cognitive state of the student. They typically perform the task of diagnosis

independently of the pragmatics of teaching. By changing the diagnostic question from "What

goes on In the head of the student?" to "What does the tutor need to know In order to teach?"

we turn our attention to the nature of teaching strategies. A crucial property of such strategies is

that they contain implicit expectations about student behavior, which, In turn, suggests that one

important function for cognitive diagnosis In instruction Is to help decide whether those

expectations are viable or not.

Subject-Matter Analysis

Teaching, as Wenger (1985) reminds us, is an act of knowledge communication, even when It

is carried out by an artifact. Its goal is to transmit a particular subject matter to the student.

We need to ask what thc implications of computer tutoring and adaptive instruction are for

representations of subject-matter. I will argue (a) that subject-matter analysis is important

because an adaptive computer tutor needs to make a distinction between the subject matter itself

and its surface manifestations, and (b) that a central obstacle to intelligent tutoring Is the fact

that different learners may acquire different representations of the target knowledge.

In our discussion of cognitive diagnosis, we noticed that three different communities of

scholars have been involved In research on diagnosis, namely educators, psychologists, and

computer scientists. With respect to subject-matter analysis, we would have to mention those

three, and then add that, &amain experts often engage In such analyses as well, particularly In

areas like mathematics and physics. But commonalities In goals, methods, and results are often
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obscured by differences in terminology. What is known as "subject-matter analysis" among

educators often goes under the name "task analysis" among psychologists (e. g., Gardner, 1985); a

mathematician might prefer the term "didactic analysis" (e. g., Steiner, 1969), while a computer

scientist is certain to use "knowledge representation" (e. g., Brachman & Levesque, 1985). The

term "subject-matter analysis" is used here without any ulterior motive; either term could have

served equally well.

WHY IS SUBJECT-MATTER ANALYSIS IMPORTANT?

The traditional educational task of finding the right representation of the subject matter has

been taken up with a vengeance by the community of scholars involved in intelligent tutoring

systems research. A glance at recent research (e. g., Sleeman & Brown, 1982) shows cognitive

scientists hard at work giving their artificial tutors explicit representations of the relevant subject

matter. Indeed, Wenger (1985), in his comprehensive review, argues that the major research

questions addressed in intelligent tutoring research are issues of knowledge representation, and

even draws the line between the prehistory and the history of intelligent tutoring systems at the

moment when the tutors began to acquire an internal representation of the subject matter.

From the point of view of individualized instruction, the importance of subject-matter analysis

is not immediately obvious. The knowledge to be taught is that which remains the same across

students. Like gasoline, a substance which can drive many different kinds of vehicles without

adapting itself to them, the content of a course may drive the learning of many different

students, while remaining the same course content. If so, how does subject-matter analysis

contribute to individualized instruction, if at all?

We can approach this question through a distinction between a knowledge item, a piece of

subject matter, and the form in which it is presented to the student. For instance, consider a
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mathematical theorem, such as the familiar Cancellation Law for fractions:

a a

This piece of knowledge can be presented in at least the following formats: (a) as a principle (e.

g., "A fraction in which the numerator and the denominator share a factor ... ."), (b) as a

mathematical formula (e. g., the one above), (c) as an algorithm (e. g., "First find the factors of

the numerator, then ... ."), (d) as a demonstration of how to execute the algorithm on a

particular problem, (e) as a demonstration of the algorithm with respect to some illustrative

materials (e. g., Dienes blocks), (f) as a collection of solved examples in which the algorithm has

been applied, and (g) as a proof that the theorem is correct. The range of possible presentation

formats is no more restricted for other types of knowledge units.

A student struggling to learn the Cancellation Law may benefit most from one or the other of

these presentations, depending upon the nature of the obstacle to his learning. A justification

may enhance memory for the theorem; a demonstration might facilitate its application. It follows

that a tutor, to be maximally helpful, must generate the presentation of the theorem on the spur

of the moment, in response to the cognitive needs of the student at that moment. This implies, in

turn, that the tutor must possess a core representation of the theorem, a deep structure, as it

were, which is Independent of the different presentation formats, but from which the specific

presentations, the surface structures, can be derived. There is thus a strong connection between

individualized instruction, on the one hand, and the separation between content and form,

between subject matter and its tutorial shape, on the other.

The Principle of Generative Interface.. In order to provide adaptive instruction,
a tutor must distinguish between the subject matter and the formats in which it can be
presented, and be able to generate different presentations of each subject-matter unit
as needed, at each moment in time choosing the form which is most beneficial for the
learner at that moment.
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The above principle spells out the essential difference between intelligent tutoring systems and

other types of teaching materials. The printed page, the audiotape, and the movie are all equally

incapable, in principle, of separating content from form. Older, so-called frame-based CAI

systems also failed to separate the two, and so constituted a very limited advance upon

traditional teaching materials, if any at all.8 However, the computer has the potential to teach

the way a good human tutor would teach, adapting the form of his presentation to the individual

student by applying generative procedures, guided by diagnostic information, to a deep

representation of the subject matter.

We can now understand why designers of intelligent tutoring systems pay so much attention

to subject-matter analysis. Implementing a pmentation-neutral representation of domain

knowledge, plus the generative mechanism which is to produce the surface presentations of it,

usually requires considerable clarification and extension of existIng representations of the subject

matter. The reader is referred to the retrospective report by Brown, Burton, and DeKleer, 1982;

(particularly pp. 244-279) on the SOPHIE trouble-shooting tutor for an illustration of just how

much thinking may be needed to implement a so-called domain expert. In short, the Principle of

Generative Interfaces is not a new Insight; instead, It explains why the field of intelligent tutoring

concerns itself almost exclusively with intelligence, but hardly at all with tutoring: The need for

a deep representation of the subject matter puts the issue of knowledge representation at the top

of the tutoring agenda, and the difficulty of that issue ensures that it stays there.

THE PROBLEM OF ALTERNATIVE LEARNING TARGETS

A computer tutor typically embodies a representation of the subject matter, a domain expert.

The target knowledge has only one representation inside the tutoring system. Considering the

eit is worth noticing that most commercial educational software is of the frame-hued vuiety.
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effort required to implement even a single domain expert, this is not surprising.

But there are no canonical representations of knowledge. Any knowledge domain can be seen

from several different points of view, each view showing a different structure, a different set of

parts, differently related. This claim, however broad and blunt - almost impolite - it may appear

when laid out in print, Is, I believe, uncontroversial. In fact, the evidence for it is so plentiful

that we do not notice it, like the fish in the sea who never thinks about water. For instance,

empirical studies of expertise regularly show that human experts differ in their problem solutions

(e. g., Prietula & Marchak, 1985); at the other end of the scale, studies of young children tend to

show that they invent a variety of strategies even for simple tasks, (e.g., Svenson & Hedenborg,

1980; Young, 1978). As a second instance, consider rational analyses of thoroughly codified

knowledge domains such as the arithmetic of rational numbers. The traditional mathematical

treatment by Thurstone (1958) is hard to relate to the didactic analysis by Steiner (1989), which,

In turn, does not seem to have much in common with the Informal, but probing, analyses by

Kleren (1978; 1980) - and yet, they are all experts trying to express the meaning of, for instance,

"two-thirds." In short, the process of acquiring a particular subject matter does not converge on

a particular representation of that subject matter. This fact has such important implications for

instruction that it should be stated as a principle.

The Principle of Non-Equifinality of Learning. The state of knowing the
subject matter does not correspond to a single, well-defined cognitive state. The target
knowledge can always be represented in different ways, from different perspectives;
hence, the process of acquiring the subject matter have many different, equally valid,
end states.

The non-equifinality of learning causes severe difficulties for Intelligent tutoring, some of

which have been discussed by Burton, 1982; (see in particular pp. 94-95) in connection with the

WEST tutor. As discussed in the section on diagnosis, if the representation of the student Is

parasitic on the representation of the subject matter, as In the case of overlay models, then the
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diagnosis interprets the student in terms of how far he has developed toward acquiring a

particular view of the subject matter, which may or may not be a useful representation of him.

The corresponding problem occurs on the output side of the tutor: Which analysis of the subject

matter should be used in deciding which topic to tutor next? Which breakdown of the subject

matter into topics is relevant for the particular student?

One partial solution to the non-equifinality problem is to implement more than one

representation of the subject matter, and allow the tutor to use all of them both when trying to

understand the student and when making instructional decisions. This solution might work in

domains where a small number of different representations of the target knowledge cover a large

proportion of students. Fos instance, in the domain of subtraction, there might be only a small

number of psychologically plausible encodings of the correct skill, and a computer tutor could try

to judge which of these encodings a particular student is en route toward, and base its instruction

on that hypothesis. The solution to implement more than one represenation of the domain

knowledge might also work well in domains where the knowledge can be expressed in very

modular units, e. g., production rules. The representation of the domain could in this case consist

of a highly redundant rule set, with several different versions of each correct rule. A particular

representation of the subject matter can then be created on-line, as it were, by selecting a subset

of rules. This is the solution used in the tutoring systems by John Anderson and his co-workers

(Anderson, Boyle, & Yost, 1985; Reiser, Anderson, & Farrell, 1985). Its success depends upon the

procedure used for selecting the right subset of rules.

An entirely different approach to the obstacles caused by non-equifinaity in learning is to try

to minimize the effects of the subject,- matter representation on the tutoring effort, an idea which

goes at right angles to the current direction of the field of computer tutoring, where most

researchers seem Intent on getting as much out of their domain experts as possible, once

implemented. It is unclear to what extent a tutor can be made Independent of Its representation
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of the subject matter. It seems possible to design a diagnostic method which is not parasitic on

the subject matter by using data-driven techniques. But it does not seem possible to design a

tutoring strategy which can choose which topic to teach next without accessing a representation

of the subject matter; indeed, such an idea seems self-contradictory.

However, one might imagine that we could program a general notion of improvement of

knowledge. Such a notion would make it possible to construct a tutor which dispenses with a

representation of the target knowledge, but bases its tutoring on a represenatlon of the student's

initial knowledge instead. Such a tutor would try to make the student improve his knowledge, in

any direction, applying its general criterion of improvement to guide the student's learning, not

caring, as it were, where the student is going, as long as he is going somewhere. Whether it is

possible to define a notion of knowledge improvement which is content-free enough to support

such tutorIng we do not know.

In short, the non-equifinality of learning poses serious problems in the construction of

intelligent tutoring *stems. It affects central aspects like diagnosis of the student and

pedagogical decision making. No principled solution to this problem has been proposed yet.

Teaching Tactic.

Consider a pianist playing a complicated piece, score spread out in from of him. In a sense,

the player is trying to follow the score. He has a number of actions to choose from - all the

key-presses, with the appropriate variations - and for each symbol in the score, each note, there is

one action, one key-press, which is taw right one; that single note is played in the context of the

key, the tempo, and the adjacent note. '.1onaider how much more difficult it would be to play

the piano, if the player were guided by a scre,,n, on which the notes were projected one at a time,

at the rate at which the piece should be played. The situation of the one-on-one tutor is similar.
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The tutor is following the learner, trying to respond to each action or performance or utterance

with the right tutorial action.

Pushing the analogy one step further, consider what would happen if we deprived the piano

player of the lower and the upper octaves, and perhaps of every other key in between as well.

With such a narrow range of keys the player could not always follow the score. There would be

many pieces of music that he could not play on such a mutilated instrument. As with playing the

piano, so with one-on-one tutoring. If the tutor has a limited range of actions to choose from, it

cannot adapt its teaching to the cognitive needs of the student. Where one student needs a

definition, another needs an explanation, while a third student might learn better from a practice

problem. Thls idea is simple but important, and so is expressed in the following principle.

The Principle of Versatile Output. In order to provide adaptive Instruction, a
tutor must have a wide range of instructional actions to choose from.

An obvious source of information about useful instructional actions is the performance of

teachers, in particular, expert teachers. (The computer tutor is not limited to the actions used by

human teachers, but neither is there any reason to believe that it can make do with a narrower

range of actions.) Inspired by Leinhardt and Greeno's (In press) careful analysis of the skill of

teaching, let us think through the major types of teaching tactics needed for adaptive instruction.

In order to keep the following remarks within reasonable bounds, I will only consider tactics

for teaching cognitive skills, like those involved in elementary mathematics.° The procedure to be

taught will be referred to as the target procedure. I will define six classes of tactics and give

some examples of each class. For the teaching of facts and principles, we have to imagine yet

other tactics.

ePlo
stand is implied on the old issue of whether mathematics should be taught through understanding or through drill.
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Category I: Tactics for Presenting the Target

The actions in this category have to do with ways of presenting the target procedure.

Obvious actions of this sort are to define terms needed to talk about the procedure, to describe

the procedure, and to prompt recall of the procedure. A procedure can also be demonstrated, I.

e., executed. In fact, there are several different kinds of demonstrations, such as annotated

demonstrations, where the tutor explains and justifies each step as it is being executed, and

interactive demonstrations, where the the student specifies the steps to be taken, but the tutor

executes them. A procedure can also be applied, i. e., executed on a concrete example (e. g., the

standard procedure for subtraction can be applied to, say, Dienes blocks). A procedure can also

be practiced, of course, and there are many different types of practice: guided practice, in which

the tutor specifies the steps one at a time, but the student executes them; annotated practice, in

which either the tutor or the student justifies the steps as they are being executed; corrected

practice, in which the tutor immediately corrects any incorrect step on the part of the student;

practice in which the tutor hints at the correct steps; and sheer drill, in which the tutor does not

intervene unless the student asks for help.

Category 2: Tactics for Presenting Precursors

A precursor to a target procedure Is a skill that the learner Is expected to have mastered before

he attempts to learn the procedure. A precursor is usually, but not always, a prerequisite, I. e., a

skill which constitutes a component of the target skill. The multiplication of Integers is a

precursor to the multiplication of fractions; it is also a prerequisite. But the multiplication of

fractions is, in most schools, a precursor to the multiplication of decimals, but it is not a

prerequisite. Actions in this category include the following: priming, in which the tutor reminds

the student of the precursor by naming it or by locating it (e. g., "remember the theorem we

learned last time"); reviewing tile precursor; and marking those steps in a presentation which

should be familiar, and distinguish them from those steps which are expected to be unfamiliar.
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Category 8: Tactics for Peesenting Purposes

The actions in this category serve to explain what the target procedure is for, what it is supposed

to achieve. The tutor can describe the purpose of a new procedure by giving a goal, 1. e.,

describing a desired result, and then introducing the target procedure as a method for achieving

that result. Other tactics include to criticize the precursors by showing a problem for which they

are insufficient, but which the target procedure can solve; to describe the target as a

generalization, or, more generally, replacement, of the precursor (e. g., the arithmetic of decimals

is, in a sense, a replacement for the arithmetic of fractions).

Category 4: Tactics for Presenting Justi fications

The tutor can justify a procedure by annotating it, i. e., by relating each step in its execution to

some principle. Another way is to give transparent cases, I. e., the tutor executes the target

procedure on problems in which the steps taken are intuitively obvious (e. g., using unit fractions

to show how multiplication of a fraction with an integer works). Yet another way is to relate the

target procedure to some equivalent procedure, which already is justified; the target procedure

then inherits the justification. The various ways of verifying the results of executing the target

procedure constitute a useful subcategory. One can verify the outcome of a procedure by

computing it with an alternative procedure, in some cases by applying the inverse procedure, or

by making an empirical test of it.

Category 5: Tactics Related to Error.

The programming term "bug" is often used in the literature on intelligent tutoring systems to

refer to systematic procedural errors. A tutor can reveal a bug in a procedure by applying the

procedure on a problem where it will generate an obviously incorrect, absurd, or impossible
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result, or he can explicitly mark the buggy step as it is generated in execution. The tutor can

also choose to explain a bug, I. e., to show which principle is being violated by the bug.

Category 6: Tactice Related to Student'e Solutione

The most common tactics in this category are to give feedback and to locate the error. But a

tutor can also prompt a eelf-check on the part of the student, prompt a eelf-review in which the

student tries to describe a sequence of steps he has taken, or prompt eelf-annotation, 1. e., exhort

the student to justify his own steps.

The six categories of teaching tactics presented above is only an initial attempt to list the

various actions an intelligent tutor needs in its behavioral repertoire in order to provide adaptive

instruction in the acquisition of procedural knowledge. Further reflections and more detailed

observations of expert teachers will no doubt lead tO extensions of the list. Even as It stands,

however, the above list is an order of magnitude richer than the behavioral repertoire of any

_existing intelligent tutoring system._

There are several reasons why current computer tutors tend to have limited output

repertoires. First, many computer tutors are restricted in their pedagogical scope. For instance,

some tutors do not teach or tutor in the ordinary sense of the word. Instead, they monitor

practice, I. e., they generate practice problems and give feedback. Second, the richness of tutorial

actions derives to a large extent from the variety of ways in which a particular knowledge unit

can be presented. Unless the tutor can present its subject matter in more than one way, this

richness will not be reflected in its action repertoire. Third, many tutorial systems have a narrow

behavioral repertoire because they have a primitive diagnostic component. Unless the tutor can

distinguish between many different cognitive states of the learner, it does not need a rich output

repertoire. Fourth, many tutoring systems have a narrow behavioral repertoire because they

have a simplistic teaching strategy. Unless the system designer knows how to make use of a

31



Ohlsson 28 Tutoring Principles

particular teaching tactic - when, under what circumstances, to evoke it - then there is little

purpose in implementing it.

The Principle of Strategic Repertoires. The range of teaching tactics in a
tutoring system is ultimately limited by the conditionality of the teaching strategy of
the system; unless the strategy can identify circumstances under which a particular
tactic is to be evoked, the tactic will not increase the power of the system.

Like the diagnostic component, the behavioral repertoire of an intelligent tutoring system is

logically secondary to its teaching strategy.

Strategies for Teaching

Cognitive diagnosis and subject-matter analysis generate the "inputs" to a tutoring system,

the information which forms the basis for its tutorial decisions. The teaching tactics discussed in

the previous section, on the other hand, represent its "output," I. c. its behavior vis-a-vis the

student. However, so far I have said nothing about how to teach, about how to generate a

sequence of teaching tactics which will successfully transmit the subject matter to a particular

student.

In spite of the fact that millions of teachers spend millions of hours every year teaching

millions of students, nobody seems to know how to teach. There is no Handbook of Pedagogical

Methods which we can take down from the shelf and from which we can read off the correct

teaching strategy for some important part of the curriculum, such as arithmetic. Educators often

invent interesting strategies for specific topics (e. g., Beede, 1985), but they have not made it part

of their professional commitments either to empirically validate their proposals, or to explain,

through theoretical analyses, why we should expect those proposals to be effective.

Psychologists are, of course, concerned with empirical verification, but, as a recent review

reminds us (Bell, Costello, & Kuchemann, 1983, chap. 7), they have chosen to work with global
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Ideologies of teaching, rather than with specific teaching strategies. The section headings of Bell,

Costello, and Kuchmeann (1983, chap. 7) reads like so many old friends: exposition vs. discovery,

meaningful vs. rote learning, learning hierarchies, advance organizers, etc., until, at the end, we

reach the Grand Daddy of all topics in experimental educational research, the spacing of

repetitions. Even if this research was in the habit of generating strong conclusions, such high-

level ideas would only go part of the way towards the construction of specific teaching strategtes.

Cognitive scientists could have made it their business to analyze teaching, but, as we have seen,

they believe that the greatest profits are to be found in the area of knowledge representation. In

short, none of the three communities of scholars who are involved in research on education have

made it their primary task to study teaching strategies.

The question to be asked here is how the goal of providing dynamically adaptive instruction

constrains the method of teaching. What teaching strategies are compatible with this goal and

which are not? I approach this question, first, by presenting an example of teaching methods

Invented by teachers, and, second, by analyzing the teaching strategies used in the most successful
_
current computer tutors, primarily the tutors designed by John Anderson and his co-workers. In

a third section, I outline a view of teaching which, I claim, is powerful enough to support adaptive

Instruction.

PLANS IN THE CLASSROOM

The classroom is an obvious source of inspiration when thinking about strategies for

instruction. The methods being employed in classrooms have passed a stringent field test of

sufficiency, since most school children do learn what they are supposed to learn. Lelnhardt (1985)

observed one expert teacher using the following plan for teaching multicolumn subtraction with

regrouping:

1. Mix subtraction problems for which borrowing is necessary with the nonborrowing
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problems, and make the student observe and recognize them before he knows how to
solve them, indeed, even before he has completely mastered nonborrowing subtraction.

2. Once subtraction without borrowing Is understood, I. e., set the goal of learnirr
to solve the borrowing problems.

3. Leave the subtraction context, and teach the regrouping procedure in isolation. Prove
its validity by presenting cases in which the learner can check that it works, I. e., that
the value of the regrouped number is not changed by the procedure. Use concrete
illustrations as well as numerical examples. Provide a large number of cases.

4. Move back to the context of subtraction, and show how the regrouping procedure can
be applied to borrowing problems, I. e., to the class of problems that was set aside
previously.

This plan emphasizes the fact that intelligent instruction does not consist of sequences of

unrelated actions, but, on the contrary, coordinates several actions in the service of a particular

pedagogical goal, in this case the goal of overcoming the common difficulties with the borrowing

operation. The justification for a plan consists of means-ends relations, e. g., the plan above

seems to be based on the idea that distinguishing between borrowing and nonborrowing problems

from the beginning of instruction in subtraction helps the child learn the correct conditions for

when to apply the regrouping operation. Such relations are not explicitly stated in the plan, but

implicitly expressed in the way It orders the teaching tactics.

The means-ends structure of the plan is important, because soine of the actions the teacher

performs while executing the plan would serve no purpose, have no meaning, in isolation from the

other actions. For Instance, making the learner recognize and acknowledge borrowing problems

before they can solve them has no meaning within the task of mastering nonborrowing

subtraction. It is purposeful within the plan because it prepares the learner for the following step

of learning how to borrow. As a second instance, the action of proving that the regrouping

operation does not change the value of the regrouped number serves a purpose In the above plan

only because the regrouping operation is later to be executed within the context of subtraction;

outside that context, who cares whether the value of the number remains constant or not? In
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short, the teaching tactics in a plan are meaningful because of their means-ends relations to other

parts of the plan.

The above plan has a number of other noteworthy properties. First, it extends over several

lessons, coordinating a large number of what is known as activity segments (Leinhardt & Greeno,

in press). Second, in all likelihood, the teacher proceeds according to the above plan every time

she teaches subtraction with regrouphig. The plan can be stored and used over and over again.

Third, the plan presupposes a particular view of the subject matter, involving a cut between

nonborrowing subtraction and borrowing subtraction and the identification of the regrouping

operation as art educationally crucial subskill. This view Is likely to be based on experience,

rather than on rational analysis of the domain. Fourth, the plan seems to be based on some

hypothesis about learning, although it is unclear how to state it. By way of illustration, we might

conjecture that the teacher's hypothesis Is that integrating a subskill into its superskill is

facilitated if both the subviiill and the superskill are mastered before the integration occurs.

As a second exampie, iet us consider the following low-level plan, which applies when the

teacher has discovered that a learner wIlo has been taught the arithmetic of fractions nevertheless

does not know how to multiply them correctly. The plan Is taken from the teaching materials by

(Hill, 1980).

1. Give the student graph paper that is twelve squares wide, and have him cut a strip
that is twelve squares long and one square wide.

2. Review the definition of multiplication of whole numbers, explain the meaning of
multiplication of fractions, and point out the similarities.

3. Demonstrate the meaning of 1/3 times 3/4 with the help of the strips. This is done as
follows:

a. Take a twelve-squares long strip, and apply 3/4 to it, I. e., cut it to make a strip
nine squares long.

b. Apply 1/3 to the nine-squares long strip, making a strip three squares long.

C. Count the number of squares In the remaining strip, thus establishing that 1/3
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times 3/4 is 3/12.
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4. Next, let the student solve the problems 5/8 times 1/2 and 1/4 times 1/3 In the same
way.

5. Let the student generate verbal descriptions of these three problems and their
solutions.

8. Help the student induce the following rule for multiplying fractions from their own
descriptions: "To multiply two fractions, multiply the numerators and then multiply
the denominators."

The basic properties of the previous plan are exemplified here as well: the means-ends ,truettl:-.1

and the existence of steps which would not be meaningful in isolation. But in contrast to the first

example, this Plan should only take a few minutes to execute. It is worth noticing that the

actions in It are specified in detail, including the exact digits used In the examples.

Could we construct an intelligent tutoring system by storing teaching plans In the machine?

We can readily imagine a library of such plans culled from observations of what teachers do, from

recommendations of what they ought to be doing, and from our own imagination. For each

teaching situation, the tutor could retrieve the appropriate plan and execute it.

From the point of view of individualized instruction, the disadvantage of a teaching plan is

obvious. Because it consists of a pre-assembled list of actions, the plan has no capacity to adapt

itself to the learner. perhaps some learners acquire the regrouping procedure easier and with

more understanding if it is taught in the context of solving subtraction problems. Clearly, what

we want to do is to teach regrouping either withln the context of subtraction or In isolation,

depending upon our beliefs about the student. What is the teacher who uses the second of the

above plans supposed to do with the student who, at step 3b in the plan, produces a strip 8

squares long? ClearlY, the rest of the plan then becomes irrelevant with respect to that student,

but there Is no information in the plan about what to do Instead. There are no resources within a

plan for accommodating changes.
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The linear nature of the plan is both its beauty and its flaw. The sequential relations between

the actions can encode complicated means-ends relations and so free the tutor from the need of

computhig those relations at run-time, as it were; but, exactly because they are not computed at

run-time, those relations cannot be adapted to the changing cognitive needs of a particular

learner. But the idea of a teaching plan should not be abandoned. The advantages of having a

coordinating structure which maps out what tactics should be used In the service of a tutorial

goal is very powerful. The Idea of a plan Is not faulty, only incomplete. Teachers do not execute

their plans slavishly or withmt flexibility; they do not need to go on blindly to the plan's bitter

end, If there is evIdence that the student0 zre not belefitinK from it. The idea of a teaching

plan should be augmented with the knowledge teachers bring to the execution of their plans, so

that the computer tutor can use its plans with the same flexibility.

The question of what is needed in order to use plans flexibly will be taken up again in a later

section. The next section deals with the teaching strategies in current computer tutors.

RULES IN THE MACHINE

A second obvious source of inspiration with respect to teaching is the strategies which have

been implemented in existing tutoring systems. For instance, the tutors constructed by John

Anderson and his co-workers (Anderson, Boyle, & Reiser, 1985; Anderson, Boyle, & Yoost, 1985;

Reiser, Anderson, & Farrell, 1985) are successfully implemented, state-of-the-art designs for

teaching complicated subject matters like mathematics and programming; they are based on a

theory of learning, empirically tested and - it Is almost overwhelming - found to produce learning

in ecologically valid settings. How do these tutors go about the task of teaching?

In brief, the strategy of the Anderson tutors Is to watch the student closely and intervene

when he makes an error. Let us see In some detail how this is done In, for Instance, the Lisp
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tutor (Reiser, Anderson, & Farrell, 1985). The activity of the student while interacting with the

Lisp tutor is to build a Lisp program (function), I. e., to write and combine calls to other

programs (functions) according to the rules of Lisp. At the top level, the interaction between the

tutor and the student consists of two parts: The tutor poses a programming task, and the

student responds by typing in his solution, I. e., his code. The Lisp tutor has a knowledge base

consisting of several hundred problem-solving rules which can solve the Lisp programming task,

and several hundred more incorrect rules, representing typical novice programming errors. Every

time the student takes a step towards completing his Lisp function, I. e., every time he types In a

new part of his code, the tutor tries to map that step onto one of its rules. If the matching rule is

a correct rule, the tutor does not intervene; if the matching rule Is incorrect, the tutor explains

the error. If the student nevertheless cannot continue on the correct solution, the tutor can show

what the correct step is, or invoke a planning mode, in which the tutor demonstrates the

algorithm to be programmed.

The geometry tutor (Anderson. Boyle,_& Yoost, 1985) is built on the same basic design as the

Lisp tutor. The student's activity In that case is to construct a geometry proof by successively

applying geometric theorems, and the tutor compares his steps to a large knowledge base

consisting of both correct and incorrect problem-solving rules. The tutor intervenes when the

student applies an incorrect rule, 1. e., makes illegal or useless moves in the space of possible

inferences.

The teaching task performed by the Anderson tutors might be characterized as the intelligent

monitoring of student activity. The student is struggling with an intellectual construction, and

the tutor helps hIm complete it. To what extent is the help provided by the tutor adapted to the

individual student, and how is this adaptability achieved? With respect to moment-by-moment

flexibility, these tutors are hard to beat. The grain-size of the tutor's behavior is determined by

the grain-size of the student's activity. For instance, the Lisp tutor can react to each Lisp atom
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as it is typed in; the geometry tutor can react to the selection of a theorem, or the application of

it. Since the tutor decides whether to intervene, and, if so, how to intervene, after each action on

the part of a the student, the flexibility of the tutor could not be greater without becoming

irrelevant, as their designers point out (Reiser, Anderson, & Farrell, 1985, p. 12).

The question of whether the content of instruction is adapted to the cognitive needs of the

learner Is more complicated to answer. Recall that the tutor responds to each action on the part

of the learner by mapping his action onto a problem-solving rule, and then retrieving the

appropriate tutorial action connected with that rule. (For the sake of uniformity, I regard "doing

nothing" as a kind of action.) This means that the student draws out of the tutor, as It were, a

particular sequence of tutorial messages by generating a particular sequence of tule applications.

Since the tutor knows several hundred different rules, the number of distinct lessons it Is capable

of delivering is astronomical. At the level of the lesson, then, the adaptation to the student is

impressive.

However, this adaptivity is achieved with the help of predefined units. Each incorrect

problem-solving rule is paired with a particular tutorial action, typically a stored message." Any

student who takes a step which matches a particular incorrect rule receives the message

associated with that rule. For instance, a geometry student who applies a congruence theorem

incorrectly for the first time receives the same instruction as a student who makes the same error,

but who have also made a large number of other errors in applying congruency theorems. There

is no on-line design of a tutorial message on the basis of the entire model of that student, I. e., on

the entire set of rules he has used, rather than on a single rule. At the level of the single

tutorial action, then, there is no adaptation to the eurrer.t cognitive state of the learner other

than the classification of his last step as an instance of a particular type of error.

10The
messages contain variables which con be bound to the objects in the particular situation in which they apply.

Strictly speaking, then, what is prestored is not the surface form of the meuage, but its tutorial gist.
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It is instructive to consider how the Anderson architecture could be extended to allow tutors

to base their tutorial decisions on more Information about the student than his last step. The

obvious solution is to write tutorial rules which test for a sequence of steps on the part of the

student, e. g., °If the student has applied rules x, y, and z, then given him message A," "If x, y,

w, then message B," etc. The fallacy in this solution becomes apparent when we consider the fact

that the tutor knows many hundreds of rules. A set of, say, 400 rules implies 1800 two-rule

sequences, 840,000 three-rule sequences, etc. The number of tutorial rules quickly grows beyond

practical limits. The more radical solution is to dissolve the prestored links between the step-

classifications, the rules, and the tutorial actions, the messages, and replace them with intelligent

agents which compute what the appropriate tutorial message is, given a particular error by a

particular student in a Particular problem-solving situation. However, this solution is equally

fallacious, because the term "intelligent agents" hides within it all the problems of intelligent

tutoring. If we knew how to design such agents, we would construct one to replace the tutors

John Anderson and his co-workers have constructed. These two fallacious extensions illustrate, I

think, the boundaries of the Anderson tutoring architecture.

In summary, the Anderson tutoring architecture is geared towards the intelligent monitoring

of praCtice, and it is build around performance-instruction pairs, where the performance part

consists of a mechanism for classifying a student's problem-solving steps as instances of particular

errors and the instruction part consists of prestored tutorial messages relevant to those errors.

Given a large data base of such performance-Instruction pairs, a tutor delivers a lesson by

responding to each error on the part of the student as it occurs in the problem-solving context.

The question of how well these tutors adapt to the student receives different answers, depending

upon the le7e1 at whkh the question is asked. At the level of a particular (incorrect) problem-

solving step, each student recleves the same tutorial message; at the level of an entire problem-

solving attempt, each student recieves a unique sequence of tutorial messages, as a function of his

A (1
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own activity.

Other projects in the field of intelligent tutoring research. have proposed strategic rules for

instruction as well. For example, the tutoring rules of the GUIDON system (Clancey, 1982; 1983)

are different in character from performance-instruction pairs, because many of them, rather than

recommend specific tutorial actions, revise the quantitative parameters of the system, which,

presumably, has global effects on how GUIDON carries out its tutorial dialogue. The author's

statement of the "set of tutoring principles that appear implicitly in the tutoring rules" (Clancey,

1983, p. 6) does not explicitly treat the question of how to adapt the content of the instruction to

the individual. His principles deal with global aspects attitudes, as it were - of the tutor. As an

example, consider the principle, "provide orientation to new tasks by top-down refinement."

Such a principle does not tell us what to do with students who do not benefit from top-down

refinement. In short, the adaptability of the GUIDON system seems to be of the same nature as

the adaptability of the Anderson tutors: Each student gets a unique lesson by drawing out a

unique sequence of locally determined responses from the tutor. As a second example, consider

the eleven pedagogic principles which Burton (1982, pp. 90-92) propose In connection with the

WEST tutoring system. They, too deal with global aspects, attitudes, on the part of the tutor, e.

g., "Do not intervene on two consequetive problem-solving steps, no matter what" (Principle 5).

The rule which comes closest to have something Interesting to say about how to shape the

instruction is Principle 2: "If the student made a bad problem-solving step, the tutor should

present an alternative step only if there exists an alternative step which Is dramatically superior

to the step the student took." In general, these rules seem rather far removed from the teaching

plans we discussed in the previous subsection.

TEACHING AS PROBLEM SOLVING

The notion of a teaching plan and the notion of a local performance-instruction unit are
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equally unsatisfactory as a basis for teaching. The reason for this Is that neither notion helps us

understand how a teaching goal (e. g., "explain borrowing") becomes translated into a sequence of

teaching tactics designed to satisfy that goal. (e.g., "mark borrowing problems," "prove

lavallance under regrouping," etc. Neither construct makes explicit the means-ends relations

which connect what a teacher does with what he wants to achieve.

But understanding the connection between goals and actions k a prerequisite for the

construction of artificial teachers capable of delivering adaptive instruction. As a corojecture, I

propose that an intelligent tutor must have the following capabilities. First, it must be able to

decompose its goals into subgoals. Second, It must be able to access descriptions of the student

and of the subject matter and on their basis generate a plan for how to satisfy the tutoring goal.

Third, it must be able to execute such a plan. Fourth, it must be able to detect mismatches

between a student and a plan. As mentioned In the discussion of diagnosis, a teaching plan

contains implicit expectations about what the student will do. When these expectations are

violated, the plan Is not quite right for that student. Finally, a tutor must be able to revise a

plan, or generate a completely new plan for a particular tutoring goal. In summary, we should

think of tutoring, I suggest, as proceeding through cycles, each cycle consisting of plan generation,

plan execution, and plan revision. According to this view, the coordination of tutoring stems

from a tutor's ability to follow a plan; the flexibility of tutoring stems from its ability to revise a

plan.

The Principle of Teaching Plans. A tutor needs to be able to generate a teaching
plan on the basis of its representation of the student, Its knowledge of the subject
matter, and its current tutorial goal; furthermore, it should be able revise its plan if it
discovers that the plan does not fit the student.

This principle 13 not a teaching strategy, but it describes the kind of strategies I suggest we

should be trying to incorporate into computer tutors. Whether tutors with such capabilities

produce more learning than other kinds of tutors is not known. The above principle is only a
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design hypothesis.

Of course, the kind of system I have outlined in the above design hypothesis is entire!)

familiar: it is a problem solver. The topics of subgoaling, of plan generation, and plan revision

are all familiar items in the discussion of problem solving. Thus, my suggestion could be restated

by saying that a teacher needs a strategy for how to solve the problem of bringing the student

from a state of ignorance to a state where he has acquired the subject matter. What research is
relevant to the construction of such strategies?

The literature on formal analyses of problem-solving strategies in general is of course extens!ve

(e. g., Pearl, 1984). But with respect to teaching strategies, in particular, the pioneering work of

Gaea Leinhardt is the only available analysis. Leinhardt and Greeno (In press) present a general

analysis at the skill of teaching. Leinhardt and Smith (1985) have applied the notion of a

planning net (VanLehn & Brown, 1980) to the phenomenon of teaching, showing how one can

generate a particular teaching plan from a structure of goals and a set of teaching tactics. This is

the kind of generative mechanism that an intelligent tutoring system needs.

The theoretical analysis of teaching strategies presuppose detailed empirical studies of the

strategies used by teachers. The studies by Leinhardt (1985), Leinhardt and Smith (1985), and

Leinhardt and Greeno (in press) have already been mentioned. As a second instance of the kind

of empirical work we need, let me mention the study by Collins and Stevens (1982) of rules for

guiding Socratic dialogues in geography. These rules make recommendations about what kind of

case the tutor should present and what kind of question to ask in response to particular

properties of the current dialogue situation, e. g., "if one or more factors (such as heavy rainfalls)

have been identified with respect to a particular value of the dependent variable (such as amount

of rice grown), then ask If those factors are necessary conditions for that value or not." These

strategies weia identified in detailed studies of expert teachers.
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In summary, I suggest that we view a one-on-one tutor as a problem solver who Is trying to

execute a teaching plan which will help the student to progress in his learning, constantly

updating the plan on the basis of the student's performance. The theoretical research needed to

implement this view of tutoring systems is to invent and formalize problem-solving strategies

which can connect tutoring goals with teaching tactics. Such analyses, in turn, would be much

helped if we had available, as a source of inspiration, a large collection of field-tested teaching

plans. The empirical research needed to progress towards intelligent tutoring systems consists of

detailed studies of expert teachers.

Conclusion

The present discussion opened with the claim that the promise and the challenge of computer

tutors lie in their potential for providing instruction which is dynamically adapted to the learner.

What kind of tutor is capable of delivering such instruction? Let us recapitulate the main course

of the argument.

A tutoring system must have an internal representation of the student, in order to adapt its

teaching to him. However, a student can be described in many ways. The only way to decide

what kind of description is needed is to consider the function of the description within the

tutoring system. The idea was advanced that the function of diagnosis is to test the viability of

expectations implicit in teaching plans, which implies that the design of a diagnostic component

depends upon the teaching strategy of the system.

A tutoring system must also have an internal representation of the subject matter, because in

order to adapt its teaching to the individual learner, it must be able to generate the particular

presentation of the subject matter which sults the learner best. The main difficulty in the

representation of subject matter is that the learner can acquire many different internal
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representations of the subject matter, all equally satisfactory from an educational point of view.

This ambiguity in where the learner is going causes difficulties for both the diagnosis of the

student and the representation of the subject matter. There is no principled solution to this

problem yet.

A tutoring system must, In order to be able to adapt its teaching to the individual learner

have a large number of teaching tactics available, so that It can choose, at any one moment, that

tactic which will benefit the learner most. Thus, in principle, the richer the behavioral repertoire

of the tutoring system, the more adaptive it becomes.

Filially, in order to adapt its instruction to the Individual learner, a tutor must be able to

compute means-ends relations between Its goals and Its actions, and to make those relations

dependent upon its representation of the student. From this perspective, a tutor is a problem

solver, a point of view which has been most clearly expressed by Lelnhardt and Greeno (In press).

Like other artificial problem solvers, a tutoring system should be build around its strategy.

Precise teaching strategies can be defined by applying formal analyses to detailed observations of

expert teachers. The ultimate conclusion of the present analysis Is that in order to construct

artificial teachers, we must first discover how to teach.
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